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AbslraeL A mnceplually simple procedure is given for mmpuling lhe m o m e m  of the 
distribution of Sates of onedimensional disordered light hinding models. from which 
generalized Lyapounov exponents are defined. 

* ,-.- a..".:-- 
I. l l l l l"UUCll" l l  

Since the early work by Anderson [l] disordered tight binding models have been the 
subject of extensive analytical and numerical study, with important results for the 
low temperature transport properties of disordered materials 121 and, recently, for 
quantum chaos [3],  where 'dynamical localization' may occur. 

For one-dimensional models with random potential, it has been shown by Borland 
[4] and Matt and m o s e  [5 ]  that eigenstates are always exponentially localized, no 
matter haw small the disorder is. The natural quantities to investigate are there- 
fore the Lyapounov exponent -yo and its generalizations yZ1. [6] .  If {ui} are the 
components of a solution of enerm E, they can be defined as follows 

where the average is taken Over different realizations of the random potential. In 
the low disorder limit yo( E) is affected by a complicated energy dependence due to 
resonances 17-91 at values E = Z c o s ( p / q n ) .  Far the generaliz-d exponents - y 2 k ,  
resonances appear gradually, in increasing number as k increases. 

An efficient way to compute the Lyapounov exponent yo is by means of a transfer 
matrix, which explicitly constructs the solution of the tight binding equation, given 
the initial condition. The generalized exponents have been studied extensively in 
several papers by Pendry and others since 1982, in a systematic approach based on 
the symmetric group. The method involved the construction of a generalized transfer 
matrix by means of direct products of the transfer matrix, followed by a reduction of 
the matrix size. This generalized transfer matrix produces the average values of the 
required power of the quantity under consideration. In place of the components of 
states, Pendry investigated the closely related amplitudes of the transmission coeffi- 
cient of the chain (for a list of references, consult [IO]). The same approach, at the 
lowest level, may be found in the paper by Ishii [ l l ] .  
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If the limit of infinite size is not taken in (l), and one refers to an ensemble of 
samples of N sites, the inverse of the exponents define lengths which obey scaling 
relationships. Calling E N  the inverse of yo for N sites, Pichard 1121 has investigated 
the scaling ansatz 

ENIN = .f(EmlN). 
This relationship in one dimension is equivalent to the scaling of conductance in the 
more general analysis of Thouless [13] and Abrahams el a/ [14]. 

A different approach is based on the definition of an ‘information length’ [15], 
suited to samples which are not long enough for the average exponential tail to show 
up and which are less sensitive to fluctuations. It probes the bulk properties of 
eigenstates, rather than the tails, and has a remarkable scaling behaviour [16]. More 
generally one may describe the eigenstates through their fractal exponents [17, 181. 
The fractal structure was first explored by Aoki 1191, Sokoulis and Economou [20], 
and recent computations by Schreiher and Grussbach [21] on very long samples have 
firmly established the multifractal character of one-dimensional eigenstates for low 
disorder. 

The aim of this paper is to provide a very simple method for computing the 
moments of the distribution of components of states (U!) for any length n of the 
samples. They are related to the eigenvalues of matrices of a peculiar structure and 
size-k + 1. For k = 2 ,4  it is easy to derive some exact results. In the limit of 
small disorder the phenomenon of resonances is easily explained together with the 
log-normal distribution of components, for large n. I start with a short account of 
known facts that will be useful in the discussion. 

2. The transfer matrix approach 

A one-dimensional tight binding model is descrihed by a tridiagonal Hamiltonian with 
a random potential. The eigenvalue equation is 

(HU), = 71,+1 t + v,7L,, = ETL,. (2) 

The numbers {vL]: which specify the potential, are independent random numbers 
distributed with the same density P( V), with finite moments 

v, = J P( V)VL d v. (3) 

For simplicity I take the odd moments to be zero, although this is not essential. 
The most investigated example is the Anderson model, with P ( V )  non-zero in 
[ - W / 2 , + W / 2 ] ,  where it takes the constant value I /W.  

The boundary conditions are ?io = 0 and ul = 1: with this choice all components 
U,, are proportional to 21, with coelficients which depend on the random numbers 
V,, with k < i t .  

It is worth noting that (2) has the same recursive structure as the expansion of 
the determinant of a tridiagonal matrix. In this case, if II,, is the n x 71 matrix with 
structure 
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and if D,( E) = d e t ( E  - H, , ) ,  we have the expansion formula 

Dn(E) = ( E -  v,)D,-i(E) - D , - z ( E )  (5) 

and the identification Z L , , + ~ ( E )  = q D , (  E )  = u1 n:,,( E - Ei) .  
The boundary condition u ~ + ~ ( E )  = 0 clearly becomes the equation for the 

eigenvalues of H,, the Hamiltonian for the finite sample of N sites. However, if no 
restriction on the size of N is imposed, and one considers H ,  on the half-line, it is 
straightfonuard to derive the Thouless formula [22] 

(6) yo(E) = lim - l o g I ~ ~ + ~ I =  1 J d E ' p ( E ' ) l o g I E - E ' l  
N-m N 

which re!ates *e L;.spousnv PVpOxPst tO :he spec%! densky p ( E )  G f  ,E,. 
An efficient technique with which to evaluate the Lyapounov exponents numer- 

ically is by means of transfer matrices [23]. The recursive relationship (2) can be 
translated into a powerful multiplicative procedure by introducing 2 x 2 transfer 
matrices: 

Iterating the process, one ends up with a product matrix that propagates the initial 
condition ( u l r i i o )  to any site. This matrix has determinant one and eigenvalues 
which approach exp[ inyo(  E)] asymptotically, as a consequence of a theorem by 
Fustemberg on the product of random matrices [24]. The large eigenvalue, for a given 
vaiue E, describes rhe exponenriai growth in n of i~,,i. To observe the exponentiai 
decay, characteristic of eigenstates, the knowledge of an energy eigenvalue E is 
required with exponential precision, to avoid the rapid growth that would follow from 
rounding errors. In fact, by computer, one usually explores the expanding domain of 
the 'transfer map' (71n,71n- l )  - + ( ~ L , ~ + ~ , U , , ) .  

The matrix elements of the transfer matrix connecting both ends of the disordered 
chain allow tha transmission wefficient tu be computed, as well as the Lyapounov 
exponent. The transmission coefficient can be related to measurable quantities such 
as the resistance via Landauer's formula [25]. The connection can be made simpler 
with a change of basis, as shown by Pichard [12]; the same basis is used in Pendry's 
papers. 

3. The fwe chain 

The free model (V,, = 0) is useful for the explanation of the rational anomalies of 
yo and to perform a kind of perturbation theory with small disorder. Equation (2) 
without disorder is easily solved by plane wdvcs: 

(8) = s i n ( w n ) / s i i i w  E = 2 cosw.  

A special case is given by the 'band-edge' [El  = 2, lor which the solutions are 
uLO' = a and u p )  = (-l)"n,  respectively for w = 0, K. 
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For a finite sample of length N ,  the condition I L ~ + ~  = 0 implies w = k r / (  N + 
For future reference, it is useful to note the following binomial expansion of (8): 

1 ) , k = l ,  ..., N .  

which will have a parallel for averages ( i t ? )  in the presence of disorder, the phases 
xT being replaced hy quantities which may have a modulus larger than one. Note 
also that only in the case of rational values of w will there he more than one phase 
equal to one, for a given power 2 k .  

In the next section I will compute the average values of U: in the presence of 
disorder at a given value of the energy E and given site n. 

4. The first and the second moment 

The average value of a function f( V,, . . . , V,&) is defined in the obvious way: 

!f) = I d V ; . . . d y '  P ( V ; )  ... P ( Y t ) f ( V ; ; .  . . ; V i t ) .  (10) J 
It is crucial to note the fact that i t k  depends only on the variables VI,. . . , V k - l .  The 
method of computing the average values ( 7 1 5 )  is then simply stated: take the power 
k of equation (2) and average; some averages factorize, for the above remark; for 
the other terms build new recurrence relations based on (2). Finally, translate these 
relationships into matrix form, to obtain the generalized matrix T("( E, W), where 
the energy E and the disorder strength W are given. 

The first moment is obtained by directly averaging equation (2) 

!7&,+1) = f?(7lvL) - (71,,-1) 

( u , , ( E ) )  = ~ t p ) ( E j .  (12) 

(11) 

with a solution that coincides with the free solution (8) 

More interesting is the next moment. By squaring (2) and averaging one obtains 

( 7 L ; t l )  = ( ( E -  V , ~ ) 2 ) ( 7 1 ~ , ) - ~ ( ~ - V , , ) ( 7 1 , , ~ ~ , , - 1 )  t ( ? t ; - l ) .  (13a) 

For the cross term we ohtain a useful relationship by multiplying (2) by 7 ~ , ,  and 
averaging: 

( 7 b n t I 7 ~ , , )  = ( E  - Y L ) ( l ~ ; )  - ( 7 ~ , , 7 ~ , , - 1 ) .  (1%) 

One may now compute the averages ( (E -  V)') = E' + V2 etc, hut it is more useful 
to keep the symbolic notation for some time. The two equations (1312) and (13b) can .~ oe . PUi matrix fori,i 
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where now the 3 x 3 transfer matrix T( , )  is independent of the position n and may be 
therefore taken to any p w e r  to construct the  second moment for any site n starting 
from the initial state (I , 0 , 0). The basic knowledge that is needed is the eigenvalues, 
which sohe a cubic equation 

z3 - z2( E2 - 1 + V,) + z( E2 - 1 - V,) - 1 = 0. 

The sn!L!tia!! (xi) Qkes t!!pref!xp the fnrm 

(11;)  = al.; + a2z ;  + a3z;.  

(15) 

('6) 

It is easy to check that the cubic equation always has a single root greater than one, 
which determines the diverging behaviour of (71 : )  with increasing n. 

The mefficienu a i  may be found either from the similarity transformation which 
diagonalizes the transfer matrix, built with the left and right eigenvectors, or through 
the initial conditions (11; )  = 0, ( 7 1 : )  = 1,  ( 7 1 : )  = E' + V,. 'tiking into account 
equation (15) one finds 

(17) 
1 + zi a .  = ' 32: - 2 z i ( E 2  - 1 + 5 )  + ( E 2  - 1 - V2)'  

Some special cases of the cubic equation (15) are particularly simple. 

roots 
For the centre of the spectrum E = 0, putting V2 = 'Lsinli CI one calculates the 

with solution 

When the disorder V, is large compared with E,, one is essentially in this case. 

resonant case. The cubic equation can be written in the form 
A peculiar situation is found at the 'edge of the spectrum' E = 2, which is a 

(z - 1 ) 3  = .x(z + I)V, 

2 I ; -  - 1 + ( 2 V p e Z l k a / 3  + . . . 

(19a) 

and for small disorder one finds 

( k  = 1 . 2 , s ) .  (196) 

The case of zero disorder, whose result we already know (see equation (9)), has 
eigenvalues z I  = I ,  r2,3 = exp(+2iw),  ( E  = 2 c o s w ) .  They are the starting p i n t  
for a low disorder expansion. The result is 

+ - + . . .  : c ? , ~  = e I--+ ''? . . .  ) (20) 
4 - E 2  

2 v,2 2 U, 
z , = 1 + -  

4 -  E2 (4  - E2)? 
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5. Higher moments 

?he procedure is easily generalized to higher moments k, which involves transfer 
matrices of sue k + 1 which have a peculiar structure. For evaluating ( U : (  E ) )  one 
defines a mlumn vector with componenu ( U % + ,  U ,  ), i = 1 , .  . . , k + 1 ,  and a 
transfer matrix T(k ) (  E ,  W )  with rows r = 1 , .  . . , k + 1 given by the terms in the 
binomial expansion of ( ( E  - V - l)'t+'-p). These matrices have the property of 

triangular matrix with only disorder terms and no energy parameter E. 
The eigenvalues of the matrix T(")(E,O) for the moment of order 2k are 

precisely the 2k  + 1 complex numbers z7 of equation (9); one of them is always 
equal to one. However, the phases equal to one become more numerous for rational 
values of w in E = 2 cos w ,  leading to small disorder mrrections which are computed 
by means of the perturbation theory of degenerate eigenvalues. This is the source 
of the resonant behaviour that affects the generalized exponents at  more and more 
rational w values as 2 k  increases. 

k t l - i  i - l  

h.i.?g tlcmized by the tr.ssfer m2tkx 54th 'pro dkxder T(k)( E ,  a)  times I !ewer 

As an example, let us consider the case 21; = 4. The uansfer matrix is 

( ( E  - V),)  -4(( E - V)3) 6 ( (  E - V) ' )  -4(( E - V ) )  1 
( ( E  - V ) 3 )  -3( (  E - V) , )  3(( E - V ) )  - 1  

1 0 
- I  0 0 
0 0 0 

E4 -4E3 GE' -4E 1 0 0 0 0  
E3 -3E' 3 E  -1 

0 

I /  c I/>'< .,I/ P T / \ \  
\(b- " J J - L \ { u -  " I /  

mi411 3 7  ,",\ 
1' '(fi, Y Y  J 

0 1 0  

The eigenvalue equation is of fifth order: 

z5 - A,z4 + A3z3 - A'z' + A,z  - 1 = 0 (22) 
..,hrm th mnff i r :nn+o  3-0 
w18cLv ".e wllllrlu.llla 

A ,  = V, + 3 V 2 ( 2 E 2  - 1) i- ( E 4  - . ? E 2  + 1 )  

A3 = -3  V, V, + (GV,  - V, )( 3 E' - 1 ) + 3 V2( E4 - 2 E' - 1 ) + ( E' - 2 ) (  E4 - 3 E' + 1 ) 

A, = -3V,V, + V,( :3 E* - 1)  + 1 SV;' -:3V2( E4 -2 E' - 1 ) + ( E' - 2 ) (  E4 -SE'+ 1 ) 

A I -  - - 5 + 6V: - 3 1/,(2E' - 1 )  + ( E4 - 3E' + I ) .  

In the case of zero disorder, the five roots of the equation (22) are 

1. (23) e f 4 i w  .i'Liw 

They coincide with the phases :cv in equation (9) for 212 = 4. If we exclude the 
excrntinpl r2sc.s Whrrc more than one mot is equal to 1; the leading behaviour for 
small disorder is given by the perturhation to the single eigenvalue z, = 1. One finds 
that 

x:, = 1 + GV2/(4 - E ' ) .  (24) 
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For the centre of the band, the eigenvalue equation is easily factorized into 

(I' + 3V2 - 1)[z3 - z2(V, + 1) + z(V, - 1 - GV;) + 11 = 0 (25a) 

for which the only root geater  than one belongs to the cubic factor; for small disorder 

z1 = 1 + A V *  + f(3V?+ V,) + ... .  

(. - 115 = 2 1 ~ ( ~ -  I)?(. + 1)v2+ . . .  

(256) 

At the band edge, since for small disorder the equation is 

(26n) 

one obtains 

z1 = 1 + (42V2)1/3 + . . .. (2W 

The sextic case is extremely laborious to work out by hand. Here I confine myself to 
a perturbative treatment of the non-degenerate case. The left and right eigenvectors 
with eigenvalue zI = 1 of the matrix T(6)( E, 0) are 

L = ( 1 , - 3 E , 3  + 3 E Z , - E 3  - 6 E , 3  + 3 E Z , - 3 E ,  I )  

R =  l,-,-, 
(27) 

, I ) .  
E E2+1 E3+6E E 2 + 1  E 

5 ' 2  
_ _ _ -  ( 2 5  20 ' 

They are not normalized; the L vector is equivalent to the eigenvector of the 
transposed matrix T(G)t .  If M is the perturbation matrix at lowest order, M = 
T(6)(  E ,  W )  - T(')( E, 0) with V, and V, set to zero, the correction of order V, to 
the eigenvalue z1 = 1 is 

V2 - 12- 
L' R 4 -  E2 

L ' M R  
62, = - - 

6. Conclusions 

For large n, the behaviour of (ut") is dominated by the largest eigenvalue z1 of the 
generalized transfer matrix T(?"), the other contributions being exponentially smaller. 

12k U, L y U ' I L L U , ,  ('1 
precisely. For small disorder we obtained 

!ng =f th.is &gex;,a!ue, divided hl' Zk, gps expGEcEt Î r\c Pnl.nt:-" I * \  

These results are consistent with the hypothesis that for large 71 and small disorder 
the distribution of the amplitude s = / U , , )  is of log-normal type [26]. The hroad- 
ness of such distribution, increasing with n, is the source of the important physical 
phenomenon of mesoscopic fluctuations [27, 281. The Same distribution was intro- 
duced by Pendry for the resistance in the weak disorder limit [29]. 
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The probability density of a log-normal distribution is 

With this distribution we compute the Lyapounov exponent 

1 1 
Yo = ;(logs) = - p  n 

and the generalized Lyapounov exponents 

The generalized Lyapounov exponents coincide with the perturbative values (29) 
provided that the follbwing choice is made for the parameters: 

. .  

1 - "2 --n-. 
1 

11 = - 
2 a  P 4-E'  (33) 

Moreover, equation (31) gives us the correct small disorder limit for yo. which may 
be checked against the expansion given in [7]. 
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